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Abstract. Using extended Hiickel theory, an LCAO-MO wavefunction was calculated for
the unpaired electron of the positive divacancy in silicon. Calculations \ryere carried out in
the molecular unit cell approach for the I point. The unit cell of the periodic aÍray was a

62 atom cluster, that is, a 64 atom perfect cell with two atoms removed to form the
divacancy. The unpaired divacancy electron occupies a level of symmetry type Bu, which
is located in the valence band near the band edge. From the wavefunction, expressed in
Slater-type 3s and 3p atomic orbitals, the hyperfine interactions of the defect electron
with 2eSi nuclei surrounding the divacancy were obtained. A systematic study was made

of the effects of Jahn-Teller deformations of the six nearest-neighbour atoms of the
divacancy, for the two distortion modes which reduce the trigonal symmetry of the defect
'to monoclinic. Also, the effects of symmetric relaxation of the nearest neighbours, and

of relaxation of the next-nearest-neighbour atoms were considered. Results for the tensors

calculated were compared with the tensors determined experimentally by electron-
nuclear double resonance. Good agreement is obtained for the two shells containing the
nearest-neighbour atoms. The identification made for the general class tensor is, howeveÍ,
different from an interpretation based on a motional-averaging experiment. For the five
shells containing the 18 next-nearest-neighbour atoms, only some tentative tensor assign-

ments can be suggested. Assignments of hyperfïne tensors to specific shells of atoms is

generally based upon agreement for the isotropic part of the interaction and for the
principal values of the axial part of the dipole-dipole interaction. For the direction of
this axis and for the deviations from axial symmetry often a bad match is obtained.

1. Introduction

In an attempt to improve the understanding of the electronic structure of deep-level

defects in semiconductors, calculations were performed for the divacancy in silicon.
These calculations yielded electron energy levels, wavefunctions, and hyperfine inter-

action constants. The divacancy in silicon, in its positive charge state, was chosen for
this study because for this defect, detailed information on the hyperfine interactions

with 2esi nuclei is available from electron-nuclear double resonanoe measurements

(De \ryit et al 1975,1976). Thoueh extended Hiickel theory (nHr) (Hoffmann1963,
Messmer and Watkins t970,1973a) is only a semi-empirical method, it was applied in
the present calculations. Our justification for this choice is that Bnr has been shown to
yield reasonable, ifnot good, results for the description ofthe electronic properties of
defects in various covalent solids. Moreover, the calculation ofhyperfine interactions
with distant nuclei requires a spatially extended wavefunction. Simple enr allolvs the
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use of a large-basis set of atomic orbitals, in contrast to more exact theories, like the

defect-molecule method or SCF-SW-Xc.

2. Details of the calculation

2.1. Atomic orbitals

The basic functions in which the electron wavefunction is expressed are normalized
Slater-type atomic orbitals:

xs"= N"r2 exp (-o6r) with N! =2Q145n, (l)

Xrpx=try'oxrexp(-cor) with N2r=2a7oll5n, Q)

etc. Our values for the orbital exponents, c, = 1.87 and ao = 1.60, are equal to those of
Messmer and Watkins (Messmer 1975), but differ from the droice of others (Kwok 1974).

2.2. Symmetry orbitals

To reduce the computational labour symmetry, adapted orbitals were projected out:

oo = ldpoxlr.
p

This, at the same time, implies grouping the atoms around the defect in shells. Two
classes of shell exist: mirrorplane shells and general shells. The symmetry orbitals are

basis functions of the irreducible representations Ag, A,r, B' or Bu of the point group

CraQlm) which is the experimentally observed symmetry of the divacancy. The one- . .

electron molecular orbitals @; are constructed as linear combinations of these symmetry
orbitals oo:

Qi=Lcoioo =Lcor(La*xà =f,c'1rtxu. (3)

2.3. Molecular unit cell approach

To eliminate the spurious levels due to dangling bonds on the surface, the molecular
unit cell approach (Messmer and Watkins l973b, ke and McGill 1973) was adopted.
A (62 atom + %) unit cell was repeated periodically. The unit cell consisted of a cubic.
block of two by two by two face-centred-cubic cells, with two atoms in the centre
removed to form the divacancy. Calculations were only performed for the I point.
For this particular point in k space the Bloch sums r/'1,; are given by:

iv

0r,i = N-t/2 L di (r-Rr) (4)
l=l

where the Rs represent the translation vectors of the simple cubic lattice. Its lattice
paÍameter was taken to be equal to 10.858 À.
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2.4. Extended Htickel theory

The one+lectron energies É'; and the corresponding wavefunctions are obtained by
equating the secular determinant lHo6a - E1Sa61l to zero and solving the system of
linear equations

L(nou, - Eiso67) co1= o

for the coefÍicients coiThe interaction rntegrals Ho61 and overlap integrals Sa6r can be

reduced to integrals involving atomic orbitals only. Overlap integrals were evaluated

analytically. Interaction integrals are obtained via the Wolfsberg-Helmholtz approxi-
mation: Hpr=-yzKpr(Ip+Ir)Spv.FororbitalsonthesamesiteKpu=1;fororbitals
on different sites Kpz has the empirically determined values Kru = Kps = 1.75, znd,

K.n = 1.313. .I, and /o are the atomic ionization energies, and in our calculations the
values /, = 14.95 eV and Io = 7.77 eV were used.

2.5. Hyperline tensor components

From the wavefunction of the unpaired divacancy electron the hyperfine interaction

wift 2esi nuclei on all lattice sites around the defect can be calculated. First, to avoid

singularities in the integrals, the s-part of the wavefunction on the hyperfine site is

separated. Contact interaction arising from the 3s atomic orbitals, with its centre on

the hyperfine site is calculated using a probability density l{*(0)1'?= 31'5 x 192+.--:
from Watkins and Corbett (1964). Dipole-dipole tensor components were obtained
from the expression:

Bo,g = gepsgN ÊlN (uil{3rorp - 12 6 op)lrt l4i),

with c, 0 = x, y , z, and a17 other symbols having their usual meaning. After substitution
of

0i=Lc,t iXt,
p

expressioh (5) may be decomposed into

Bag= BLp + 2 BIs+InJè* II Bll .

' i+l t+i+i+L

The summations in equation (6) are over lattice sites, where the 2esi hyperfine site

carries index 1. The first term on the right-hand side of equation (6) takes account of
the atomic orbitals centred on the 2eSi site. Its evaluation leads to the familiar axially
symmetric interaction, with á = %G"&sglrIrN) 0-')rp. For (r-3)3n we took
16.1 x 102acm-3 (lVatkins and Corbett 1964). When only one of the atomic orbitals is

centred on the hyperfine site the terms.Bll describe the interaction. Terms Blfi account

for the hyperfine interaction when both orbitals have a common centre, which is how-

ever different from the 2esi site. The terms B[Ip and al[ involve two-centre integrals,

for which analytical expressions could be derived (C A J Ammerlaan and J C Wolfrat,
unpublistred). Finally, when both atomic orbitals and the hyperfine nucleus have no

(s)

(6)I
i+L



Hyperfine interactions of the divacancy in Si 451

centre in common, the terms,BS require the evaluation of three.centre integrals.
Contributions from these last terms are likely to be small and were therefore neglected.

The calculated tensors were transformed to their principal axes systems. It was found
convenient to equate the principal values in order ofdescending magnitude 1s a +2b,
a-btc,anda-ó-c,respectively.Theparameterathendescribestheisotropicor
contact interaction. The purely axial part is given by D, while c takes account ofdevia-
tions from axial symmetry.

3. Results and discussion

3.1. Energy levels

A first topic to be considered is the distribution ofelectrons over the eigenstates. For
this purpose figure I shows the enerry levels which are located near the bandgap. For
reference the energy positions for the bottom of the conduction band at E"= -6.67 eY,
and for the top of the valence band at E, = -'l -7 5 eY are included in the figure. These
values were taken from an EHT bandstructure calculation using identical parameters as

for the calculation for the solid with the defect. With the divacancy in the positive charge
dtarge state a 62-atom unit cell contains 247 electrons. If these electrons are put into
the lowest possible levels, which represents the most straightforward way of filling,
three electrons are left for the levels labelled A"(1) and B"(l). The unpaired electron
occupies a level located in the valence band, while it should have been in the bandgap.
Clearly, the energies ofthe electron states associated with the divacancy are predicted
too low by rHr. The situation is reminiscent of the surface dangling-bond states. The
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Figure 1. Energies of the one-electron mole-
cular orbitals near the ban d9ap as functions of
the distortion paÍameter EGl. All other
distortion parameters are zeÍo.
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problem may be remedied by artificially lifting the states A,r(1) and B"(1) into the

bandgap. Probably no sudr problems arise with level Ar(2). This is a state having a low
localization on tlte divacancy, showing almost no sensitivity to distortions arourid the

defect, and is therefore more like a valence-band state. Its energ5r is likely to be pre-

dicted more reliably with respect to the valence-band edge. An altemative way of
filling enerry states therefore suggests itself. In this recipe tlre level ,\(2) obtains two
electrons first, leaving only one electron for the levels A"(1) and B"(1). The unpaired

electron will then be in the lowest of these two levels. We have preferred the latter
procedure for electron distribution.

3.2. Nearest-neighbour distortions

From the discussion in the previous section it follows that the highest electron will
occupy an orbitally degenerate E,, type level for zero distortion, EGl = 0. It is known
from the Hellmann-Feynman theorem that the system may lower its energy by a
spontaneous distortion, thereby lowering the symmetry and lifting the degeneracy. The

resulting symmetry for the divacancy in silicon from rpn is known to be C*. Consider-
ing only displacements ofthe six nearest neighbours there exist 18 degrees offreedom
for distortions. Only two of these, however, lead to the required C1 s/mmetry. These

two distortion modes, desigrated by EGl and EG2, are shown in figure 2. One unit
distortion is defined as an RMS displacement of the six nearest-neighbour atoms of I À.
Also included in Íigure 2 are sketches of the two, symmetric relaxation modes AGI and
AG2. The picture of AGI also serves the purpose of defining the coordinate system.
Atoms (1, 3, 3) and (1, 3, 3) constitute the nearest-neigfrbour mirrorplane shell.

3.3. The distortion modes EGI and EG2

Computations of the hyperfine parameters a,b and c, and also of angles ]i and 6;,
(i = l-3, specifying the direction of the principal axes) were performed systematically
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Figure 2. The distortion modes AGl , AGz, EGl and EG2 illustrated by side view (left
parts) and top view (right parts). Broken circles repÍesent the vacancy sites, hatched
circles the six neaÍest-neighbour atoms. Arrows are drawn to scale for one unit of
distortion.
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over the region -0.3 < EGl, EG2 < 0.3, in steps of 0.1 for both the distortion para-

meters. The results for several states, which have their enerry near the bandgap, and also

show a high degree of localization on the divacancy neighbours, were compared wittt
data known from experiment. It is clear at the outset that Mos of symmetry-type A,,
and B, can be left out of consideration, since their wavefunctions have a nodal plane on
the reflection plane ofthe divacancy, and they consequently predict a zero value for
the contact interaction of mirrorplane class tensors. This would obviously contradict
experimental findings. At this stage the results for nearest-neighbour shells were the
only ones considered, by comparing the (1, 3, 3) shell results with tensor Ml, and the
(3, 3, I) shell results with the largest general class tensors. Among the Ar- and B,r-type
molecular orbitals there appears to be only one possible candidate for the unpaired
electron to be accommodated in; this no doubt is the 8,, (1) level. For this particular
level a summary of the results is shown in figure 3. The heavy line in the figure

D i stort ion
EG2

Figure 3. Division of the (EGl, EG2) plane for lowest-lying A,, or Br, level, together with
cuiles repÍesenting a best match between calculated and measured hyperfine parameters
a, b and c. Labels to the curves specify the relevant shell and tensor,

separates the (EGl, EG2) plane in two parts. In the upper left part the unpaired electron
occupies the Br(i) level, according to the second method of filling states described.
For the other way of distributing electrons over states, the regions for occupation of
A,, and B,, would be simply reversed. The other curves in the figure represent the
(EGl, EG2) pairs for whió agreement, or best agreement, exists between the calculated
(1,3, 3) shell tensor components and Mt (full curves), and the (3, 3, Ï) shell compared
with Gl or G2 (broken curves). Obviously the lines do not pass through one point, as

they should for the perfect theory. However, there are regions of promising combina-
tions, especially for (EGl, EG2) near (0.15,0.1). More detailed results for the two
nearest-neighbour shells for a trajectory given by EGI +EG2 = 0.2 are presented in
figures 4 and 5.
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Figure 4. Computed results for the hyperfine interaction constants 4, á and c for the
nearest-neighbour mirrorplane shell (1, 3, 3) for some @G1., EG2) combinations satisfying
EGI + EG2 = 0.2. The breathing-mode parameter AG2 is given as label to the curves.

AGI and REL are zero. Experimental values for Ml from Watkins and Corbett (1965)
appear as horizontal lines.

Inspection of figure 4 reveals that a satisfactory mató between experiment and
theory exists for EGI = 0.1-0.15, and EG2 = 0.1-0.05. Noting the small value of c for
these distortions, c = 0.01 MtIz, we conclude that the theory predicts an axially
symmetric interaction. This agrees with experiment (Watkins and Corbett 1965) where
no deviation from axial symmetry was reported. The computed angle 6 t= 49 

o 
com-

pares favourably with the experimental value of 55-2o. ïhe interpretation of the data
for shell (3, 3, 1) is less straightforward. The sensitivity of the calculated results on the
distortion parameters, together with the close similarity between the tensors Gl and G2,
makes an identification of the (3, 3, 1) shefl tensor witl any of these debatable. Never-

theless, tlre agreement for Gl is better than for G2. Theory predicts an interaction with
only small deviations from axial symmetry, and this only holds for Gl. An identification
of strell (3, 3, Ï) with tensor Gl is in coflflict with the conclusion based upon motional-
averaging experiments (Watkins and Corbett 1965).

3.4. Other relaxation modes

As there is clearly room for improvement, other relaxation modes were also considered.
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Figure 5. Computed results for the hyperfine interaction constants a, á and c for the
nearest-neighbour general class shell (3, 3, 1) for (EGl, EG2) combinations on the
stÍaight line EGI + EG2 = 0.2. Value of AG2 is label to the curves, AGI = REL = 0.

Experimental values for the tensor components, from De Wit et al (1975), are given as

horizontal lines.

The first of these are the two symmetric relaxation modes AGI and AG2, depicted in
figure2. Once the D36 degeneracy has been lifted they are again of importance. Calcula-
tions were only performed for AGI = +0.1, and AG2 = 10.1, along the tracks EGI +
EG2 = 0, and EGl + EG2 = 0.2. Generally, the effects of symmetric relaxation are small.
Besides, its effect on the curves representing the best match is like a uniform shift. In
particular, the distance between the curves a(1,3,3)-M1 and á(1, 3, 3)-Ml may not
be reduced appreciably by these relaxation modes. The dependence ofa, b and c on AG2
is larger, in general. This parameter is therefore shown in figures 4 and 5.

The effect of relaxation of the next-nearest.neigfrbour atoms was also considered.
These atoms were displaced in a direction parallel to the displacement vector of the
corresponding nearest neigfrbour, but scaled down in magnitude by a factor of two or
four. This is described by the parameter REL = 0.5, REL = 0.25, respectively. For the
latter value the new position of the second neighbour is again the centre of gravity of the
one fint neighbour of the divacancy and the tfuee third neighbours. Second-neighbour
relaxation usually has a rather small effect on the hyperfine constants.
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Shell (ï,5,5 )
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\Figure 6. Computed results for the hyperfïne interaction constants a, b and c for the
second-neighbour mirrorplane class shell (1,5,5) against the distortion parameters EGl,
EGZ and AGI. AGz = REL = 0. Experimental values from De Wit et al (1975).

3.5. Next-nearest-neighbour tensors

The 18 second-neighbour atoms of the divacancy form the (I,5,5) mirrorplane class

strell and four general class strells. For these shells tentative tensor assignments can be

made at best. The calculated results for shell (1,5,5) are shown in figure 6. Though
there seems to be reasonable agreement with tensor M2, apart from constant c, there is

a large discrepancy with regard to tlre direction of the axis of symmetry. In this respect

there is even excellent agreement with tensor M3, which therefore also should be kept
as a candidate. As an example of a general class shell of next-nearest-neighbour atoms,

and of the effectiveness of the relaxation parametet' REL, figure 7 is finally presented.
An identification of this shell with tensor G5 might be suggested.
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